
Automatic Di�erentiation of a Parallel

Molecular Dynamics Application�

P� Hovlandy C� Bischofz L� Rohz

December ��� ����

Abstract

The ADIC and ADIFOR automatic di�erentiation tools have proven useful for
obtaining the derivatives needed in many scienti�c applications written in Fortran ��
or ANSI C� But many new scienti�c programs are written for or ported to parallel
platforms to achieve maximal performance� We provide an overview of our approach
to the complex task of applying automatic di�erentiation techniques to parallel
programming environments� especially as applied to a parallel molecular dynamics
application written in C�� with PVM message passing�

� Introduction

There are many areas of computational science in which it is necessary or desirable to
compute derivatives� One important domain is computational molecular dynamics� which
can use derivatives in a number of di�erent ways� One common use of derivatives is in
the computation of forces� which are the derivatives of energies with respect to position�
Molecular dynamics simulations� like other computer models that attempt to simulate
some physical phenomenon� can bene�t from sensitivity analysis� wherein we compute the
derivatives of the model function with respect to various parameters in order to determine
the sensitivity of the model to changes in these parameters� Finally� higher order derivatives
can improve the accuracy of a numerical method� such as a di�erential equation solver�
enabling� for example� longer time steps�

When computational scientists need derivatives� they usually obtain them through
divided di�erence approximations or by hand�coding derivative code� The former approach
su�ers from the fact that the values being computed are approximations� not true
derivatives� If the step�size used for the divided di�erences is too large or too small� the
approximations can be grossly inaccurate� Furthermore� there is no way to assess the
accuracy of the approximation� Developing a derivative code by hand provides e�cient�
accurate derivatives� However� hand�coding can be tedious� error�prone� and extremely
time�consuming� Derivative code can also be generated using a symbolic manipulator such

�This work was supported by the Mathematical� Information� and Computational Sciences Division

subprogram of the O�ce of Computational and Technology Research� U�S� Department of Energy� under

Contract W��������Eng��	� and the National Science Foundation� through the Center for Research on

Parallel Computation� under Cooperative Agreement No� CCR���
���	�
yDepartment of Computer Science� University of Illinois at Urbana�Champaign� ���� W� Spring�eld

Ave�� Urbana� IL 
�	��� hovland�uiuc�edu�
zMathematics and Computer Science Division� Argonne National Laboratory� ���� S� Cass Avenue�

Argonne� IL 
����� fbischof�rohg�mcs�anl�gov�

�



�

as Mathematica� However� traditional symbolic manipulation is memory intensive� and
is often not feasible for large programs or programs with many loops and branches� An
alternative to all of these approaches is the technique of automatic di�erentiation �AD	�
AD produces derivative code that computes accurate �within the limits of �nite precision
arithmetic	 derivatives� and can be applied to arbitrarily complex programs with minimal
e�ort on the part of the programmer�

In recent years� tools have been developed that enable AD to be applied to programs
written in Fortran� C� Ada� and other languages� 
�� �� �� 
� ���� However� there
remains a need for tools for applying AD to parallel languages and programming systems�
Without such tools� a substantial amount of hand�coding must be done in order to develop
programs for computing derivatives� We are developing tools and techniques for the
automatic di�erentiation of parallel programs written in explicitly parallel languages� like
Fortran M 
��� or using parallel extensions� such as MPI and PVM 
�� ��� We are applying
some of these techniques to NAMD� a parallel molecular dynamics application written in
C�� with PVM message passing 
����

This paper describes the automatic di�erentiation of NAMD� We begin with a brief
introduction to automatic di�erentiation in Section �� Section � brie�y describes NAMD
and explains which derivatives are being computed and how they will be used� Section �
describes how AD technology is being applied to this program� We conclude with a synopsis
of our research and a description of planned future work�

� Automatic Di�erentiation

Automatic di�erentiation can be used to transform a program for computing some
mathematical function into a new program capable of computing not only the function� but
also the derivatives of that function 
�� ��� Automatic di�erentiation relies upon the fact
that all programs� no matter how complicated� use a limited set of elementary operations
and functions� as de�ned by the language� The function computed by the program is simply
the composition of these elementary functions� Thus� we can compute the partial derivatives
of the elementary functions using formulas obtained via table lookup� then compute the
overall derivatives using the chain rule� This process can be completely automated� and is
thus termed automatic di�erentiation 
���

For example� consider the following program to compute the function y � f�x	� where
f�x	 � �sin�x	

p
x	�x�

A � sin�X�

B � sqrt�X�

C � A � B

Y � C�X

Using automatic di�erentiation� we can generate code to compute y and dy�dx�

A � sin�X�

dAdX � cos�X� � table lookup

B � sqrt�X�

dBdX � �����B� � table lookup

C � A � B

�See http���www�mcs�anl�gov�Projects�autodiff�AD Tools� for a survey of AD tools�



�

dCdA � B � table lookup

dCdB � A � table lookup

dCdX � dCdA�dAdX 	 dCdB�dBdX � chain rule

Y � C�X

dYdC � ��X � table lookup

dYdX � dYdC�dCdX 
 C��X�X� � chain rule�table lookup

This is an example of the so�called forward mode of automatic di�erentiation� In this
mode� we propagate derivatives with respect to the independent variable�s	 �in this case
x	� These derivative vectors �in general� there can be more than one independent variable	
are often denoted ry or g�y� In the event that y itself is a vector� we may refer to ry
as a derivative matrix� While this example is very simple� automatic di�erentiation can be
applied to complex programs of arbitrary length� The ADIC tool has processed programs
of over ������ lines and the ADIFOR tool has been applied to programs of over �������
lines 
���

� NAMD

NAMD is a parallel� object�oriented molecular dynamics program designed for high per�
formance molecular dynamics simulations of large biomolecular systems 
���� Important
features include scalable parallelism� an e�cient implementation of full electrostatics� mod�
i�ability� portability� and compatibility with X�PLOR �a program for determining three�
dimensional structures from crystallographic di�raction or NMR data	� Full electrostatics
are computed using the Distributed Parallel Multipole Tree Algorithm �DPMTA	 developed
at Duke University 
���� NAMD is written in C��� using an object�oriented and highly
modular design� This design facilitates modi�cation of algorithms and techniques� Com�
munication in NAMD is accomplished via PVM� making it portable across a wide range of
computing platforms� The input and output �le formats used by NAMD are identical to
those used by the program X�PLOR� thus integrating the two tools and the accompanying
visualization facilities�

To reduce the cost of the evaluation of long�range electrostatic forces� a multiple time
step scheme is combined with the DPMTA method� All but the long�range electrostatics
interactions are calculated during every time step� The longer range interactions are
computed only every k steps� For appropriate values of k� the error due to holding the
forces constant for a few time steps is small compared to the errors incurred from using a
�nite timestep�

The developers of NAMD hope to improve the integrator using an approach that
requires Hessian�vector products 
���� The Hessian required corresponds to the derivatives
of forces with respect to position� The availability of these correction terms is expected
to increase the smallest time step by a factor of nearly three� Another proposed method
would increase performance by decreasing the frequency of long�range force evaluations� It�
too� requires the derivatives of the forces� The former method is of interest to researchers
because of its improved accuracy� while the latter method would enable the simulation of
larger molecules in less time�

While it is possible to develop code to compute the derivatives of the forces by hand�
there are several reasons for preferring automatic di�erentiation� Writing derivative code
by hand can be very di�cult� and may require a great deal of time for development
and debugging� In contrast� automatic di�erentiation allows us to develop correct and
e�cient derivative code with very little human e�ort� In addition� NAMD�s modular design



�

encourages the use of new algorithms to compute forces� or the incorporation of forces
that had previously been neglected� Again� automatic di�erentiation allows us to create
derivative code for these new force implementations with very little e�ort� Finally� the
derivative matrices being computed are sparse� Tools such as ADIC and ADIFOR provide
support for automatic exploitation of sparsity� without prior knowledge of the sparsity
structure of the derivative matrices 
�� ���

� AD of NAMD

NAMD is written in C�� with PVM message passing� A port to MPI is planned for the
future� Thus� in order to apply AD to NAMD� we must be able to apply AD to programs
written in C�� and parallel programs written using PVM �MPI	�

��� AD of C��

ADIC �Automatic Di�erentiation of C	 is an extensible AD tool that produces code for
computing �rst and�or second derivatives� The second derivative capabilities are currently
in the prototype stage� ADIC uses a source�to�source program transformation technique to
produce the derivative code and provides the following important features� robustness� in
the form of full support for ANSI C� �exibility� provided by simple command�line �ags and
control �les� portability� through a careful design that ensures that the code generated by
ADIC is portable across di�erent platforms and compilers� and extensibility� through the
use of a language�independent component architecture�

To accommodate C��� ADIC has been extended to support important language
features� such as classes and methods� ADIC also takes advantage of C�� features when
generating the derivative code� e�g�� new variables may be declared anywhere within a
block� Certain aspects of C�� are not yet supported� One unsupported feature is the use
of default arguments� Iostream operations are also not supported�

��� AD of Parallel Programs

Automatic di�erentiation requires that we associate a derivative vector �or matrix	 with
each variable� In Fortran� this can be accomplished via a naming scheme� such as using
the variable name g var for the derivative vector associated with the variable var� In C
and C��� this is not possible� because of the aliasing induced by pointers� Instead� the
association is accomplished either by creating a structure containing the variable and its
associated derivative vector or by applying a hash function to the address of the variable�

In a parallel programming environment with message passing� we must preserve the
association between variables and their derivative vectors when data is sent via a message�
One approach is to pack the variable and its gradient vector next in the same message� The
packing and unpacking may incur some overhead� but guarantees the correct association
between a variable and its derivative vector� This method is illustrated in Figure �� Another
option is to send twomessages� one containing the variable and one containing the derivative
vector� In this case� we must use tags and source identi�ers to ensure that the association is
preserved� and additional latency overhead may be incurred if we cannot use computation
to mask the communication time� This method is illustrated in Figure �� Note that this
implementation assumes that messages from the same source arrive in order� For parallel
programming environments where this is not necessarily true� a more sophisticated tagging
scheme is needed�

To study the tradeo� between latency and packing overhead� we conducted some simple



�

sender�

pack�x�msg�

pack�g�x�msg�

send�msg�dest�tag�

receiver�

recv�msg�source�tag�info�

x � unpack�msg�

g�x � unpack�msg�

Fig� �� Pseudocode for the packing method

sender�

send�x�dest�tag�

send�g�x�dest�tag�

receiver�

recv�x�ANY�SOURCE�ANY�TAG�info�

source � info
source

tag � info
tag

recv�g�x�source�tag�info�

Fig� �� Pseudocode for the separate messages method

experiments� Using MPI on a network of SPARCstations and on an IBM SP� we measured
the time to pack and unpack vectors of varying lengths into a message bu�er� We also
measured the time to send messages of varying lengths� Using this data� we used a least
squares �t to �nd the length�dependent and �independent components of the cost� Table �
summarizes our results� We use � to denote the latency� � to denote the bandwidth� �p

to denote the length�independent component of packing and unpacking a vector� and �p to
denote the number of bytes that can be packed and unpacked per second� Thus� the time
to send a vector of length n is approximately �� n��� while the time to pack and unpack
the same vector is �p�n��p� The value � � ����p	�p provides a measure of the minimum
number of bytes that must be packed in order to exceed the latency� Therefore� on these
systems� packing variables and their associated derivative matrices together is preferable�
as long as their combined size does not exceed about ������� thousand bytes� This limit
is not so large as it may seem� A vector of ��� double precision values� with an associated
derivative matrix of size �������� requires over ��� thousand bytes of storage� Nonetheless�
for typical problems on typical systems� packing variables and derivative matrices together
seems preferable to separate messages�

In general� there are other issues that may need to be addressed in applying AD
to parallel programs� In addition to preserving variable�derivative matrix associations�
we should correctly di�erentiate reduction operations and attempt to avoid unnecessary
derivative computations� These issues are discussed elsewhere 
�� ����

��� AD of NAMD

Due to some of the limitations mentioned in Section ���� we were unable to process NAMD
in its entirety� Instead� we chose to process the class responsible for computing the bonded

System � �s	 � �B�s	 �p �s	 �p �B�s	 � �B	

SPARCstations ����� ���� ����� ��� ����� ���� ����� ��� ����� ���

IBM SP ����� ���� ��
�� ��� ����� ���� 
���� ��� ����� ���

Table �

Parameters for communication and packing times �s � seconds� B � bytes�



�

forces �BondForce	 separately� This class uses the Vector class� so we needed to process
this class� too� The Vector class uses output streams and default parameters� so we were
forced to make some modi�cations before processing it with ADIC� After the necessary
changes had been made� the BondForce and Vector classes were processed with ADIC�
resulting in two new classes� ad BondForce and ad Vector� that were integrated with the
unprocessed portion of NAMD�

In order to integrate the new classes into NAMD� we needed to write methods for
sending and receiving ad Vector objects� which contain � objects of type DERIV TYPE� A
DERIV TYPE object may be viewed as containing a variable �denoted DERIV VAL	 and its
associated derivative vector �denoted DERIV grad	� Because NAMD already packs multiple
objects into a single message� we chose to pack variables and derivatives together in order
to preserve the association between the two objects� The following method is used to pack
a variable and its associated derivative vector into a message�

Message� put�int n� DERIV�TYPE �d�int copy�TRUE� int delstor�FALSE� �

int i�

for �i���i�n�i		��

�� Add the value of the variable d�i� to the message ��

putmsg��void ����DERIV�VAL�d�i���� DOUBLE� �� sizeof�double�� copy�

delstor��

�� Add the gradient vector of variable d�i� to the message ��

putmsg��void ����DERIV�grad�d�i���� DOUBLE� ad�GRAD�MAX�

sizeof�double�� copy� delstor��

�

return �this�

�

� Conclusions

We have applied automatic di�erentiation to the class in NAMD responsible for computing
the bonded forces� This required modifying the ADIC tool so that it could handle C���
adding support for the communication of variables and their associated derivative vectors
to NAMD� and incorporating the AD�generated class into NAMD� In the future� we intend
to apply AD to additional classes� such as that responsible for computing angle forces�
After the correctness of the derivatives has been veri�ed� they can be used to improve
the integration scheme� We will also continue our work on the development of tools
for the automatic di�erentiation of parallel programs� We have addressed several of the
important issues in this task� including maintaining the association between derivative
vectors and variables� improving e�ciency through intertask dependence analysis� properly
di�erentiating reduction operations� and utilizing the added potential for parallelismcreated
by the automatic di�erentiation process 
�� ���� Based on the experience gained from the
development of prototype AD tools for Fortran M and Fortran with MPI message passing
as well as the application of AD to NAMD� we plan to build a tool for the automatic
di�erentiation of C�C�� with PVM�MPI message passing�

Acknowledgements

We thank Bob Skeel� Klaus Schulten� and all of the Theoretical Biophysics group at the
Beckman Institute at the University of Illinois for their assistance in working with NAMD�






We also thank Mike Heath for his comments on an earlier version of this paper�

References

��	 C� Bischof� A� Carle� G� Corliss� A� Griewank� and P� Hovland� ADIFOR� Generating derivative
codes from Fortran programs� Scienti�c Programming� � 
����
� pp� ������

��	 C� Bischof� A� Carle� P� Khademi� and A� Mauer� ADIFOR ���� Automatic di	erentiation of
Fortran 

 programs� IEEE Computational Science � Engineering� � 
����
� pp� ������

��	 C� Bischof� L� Roh� and A� Mauer� ADIC � An extensible automatic di	erentiation tool for
ANSI�C� Preprint ANL�MCS�P��������� �����

��	 I� Foster� R� Olson� and S� Tuecke� Programming in Fortran M� Tech� Rep� ANL������� Rev�
�� Mathematics and Computer Science Division� Argonne National Laboratory� October �����

��	 A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam� PVM � Parallel
Virtual Machine� A Users
 Guide and Tutorial for Network Parallel Computing� MIT Press�
Cambridge� �����

��	 A� Griewank� On automatic di	erentiation� in Mathematical Programming� Recent Develop�
ments and Applications� Amsterdam� ����� Kluwer Academic Publishers� pp� �������

��	 A� Griewank� D� Juedes� and J� Utke� ADOL�C� a package for the automatic di	erentiation
of algorithms written in C�C��� ACM Transactions on Mathematical Software� �� 
����
�
pp� ��������

��	 W� Gropp� E� Lusk� and A� Skjellum� Using MPI � Portable Parallel Programming with the
Message Passing Interface� MIT Press� Cambridge� �����

��	 P� Hovland� C� Bischof� and L� Roh� Automatic di	erentiation of parallel reduction opera�
tions� Preprint ANL�MCS�P��������� Mathematics and Computer Science Division� Argonne
National Laboratory� �����

���	 P� D� Hovland� Automatic Di	erentiation of Parallel Programs� PhD thesis� University of
Illinois at Urbana�Champaign� In preparation�

���	 M� L�opez�Marcos� J� M� Sanz�Serna� and R� D� Skeel� Explicit symplectic integrators using
Hessian�vector products� SIAM J� Sci� Comput�� �� 
����
� To appear�

���	 M� Nelson� W� Humphrey� A� Gursoy� A� Dalke� L� Kale� R� D� Skeel� and K� Schulten�
NAMD � a parallel� object�oriented molecular dynamics program� Journal of Supercomputing
Applications and High Performance Computing� In Press�

���	 W� T� Rankin and J� A� Board Jr�� A portable distributed implementation of the parallel
multipole tree algorithm� in Proceedings of the Fourth IEEE International Symposium on High
Performance Distributed Computing� Los Alamitos� CA� ����� IEEE Computer Society Press�
pp� ������

���	 N� Rostaing� S� Dalmas� and A� Galligo� Automatic di	erentiation in Odyssee� Tellus� ��a

����
� pp� ��������


